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ABSTRACT 

On large scales, the higher order moments of the mass distribution, SJ = ~J/$-‘, e.g., the skewness 

S3 and kurtosis Sd, can be predicted using non-linear perturbation theory. Comparison of these pre- 

dictions with moments of the observed galaxy distribution probes the bias between galaxies and mass. 

Applying this method to models with initially Gaussian fluctuations and power spectra P(k) similar 

to that of galaxies in the APM survey, we find that the predicted higher order moments SJ(R) are in 

good agreement with those directly inferred from the APM survey in the absence of bias. We use this 

result to place limits on the linear and non-linear bias parameters. Models in which the extra power 

observed on large scales (with respect to standard CDM) is produced by scale-dependent bias match 

the APM higher order amplitudes only if non-linear bias (rather than non-linear gravity) generates the 

observed higher order moments. When normalized to COBE DMR, these models are significantly ruled 

out by the $7 observations. The cold plus hot dark matter model normalized to COBE can reproduce 

the APM higher order correlations if one introduces non-linear bias terms, while the low-density CDM 

model with a cosmological constant does not require any bias to fit the large-scale amplitudes. 

Subject Headings: Large-scale structure of the universe - galaxies: clustering 
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1 Introduction 

In standard models for galaxy formation, such as cold dark matter (CDM) and its offshoots. it is 

usually assumed that the observable galaxy distribution is related through a simple bias mechanism to 

the underlying matter distribution predicted by theory (e.g., Bardeen,et al. 1986). In essence. following 

Kaiser (1984a,b) and Bardeen (1984), one assumes that galaxies form from peaks above some global 

threshold in the smoothed linear density field. In the limit of high threshold and small variance. the 

peaks model is well approximated by the commonly employed linear bias scheme, in which the galaxy 

and mass density fields, 69(~) = (?Q(z) - $)/$ and 6(z) = (p(z) - p)/p. are related through a 

constant bias factor, 

6&c) = 6#5(2) . (1) 

More generally, if the bias is local, the galaxy field may be some non-linear function of the density field. 

&(W = f(b(z))- R ecently, more complex, non-local schemes for bi,asing have also been studied ( Babul 

and White 1991, Bower, et al. 1993); in these models, the effective bias factor becomes scale-dependent. 

If the bias factor increases with scale, the galaxy spectrum will have more relative power at large scales. 

Indeed, it has been shown that such modifications of the standard bias scheme can generate the excess 

large-scale power found, e.g., in the APM survey (Maddox et al. 1990) within the context of the standard 

(Rh = 0.5) CDM model. This modification of the standard CDM scenario is fundamentally different 

from other CDM variants, such as non-zero A, tilt, or cold plus hot dark matter, where there is genuine 

extra power in the density field. 

To date, two-point statistics (correlation functions and power spectra) have been the dominant 

benchmark for testing theories of biased structure formation. It is difficult, however, to test biasing 

models with two-point statistics alone, because one must specify a number of input variables to predict 

the amplitude of the power spectrum, e.g., the density of the universe $2, the Hubble constant h (where 

Ho = 1OOh km s-l Mpc-I), the type of dark matter, the cosmological constant A, the initial ampli- 

tude and the clustering interactions (gravity). On the other hand, the non-linear perturbation theory 

predictions for the higher order moments of the mass distribution, SJ = 7;/,$;-‘, are approximately 

independent of time, scale, density, or geometry of the cosmological model (Juskiewicz, Bouchet. and 

Colombi 1993, Bernardeau 1994). The higher moments only depend on the hypothesis that the initial 

fluctuations are small and quasi-Gaussian and that they grow via gravitational clustering. Thus. the 

moments SJ are an excellent tool for discriminating among biasing scenarios. 

Frieman & Gazttiaga (1994) h ave considered how the higher order irreducible moments of the 

galaxy distribution can be used as a test of models for large-scale structure. In particular, they studied 

the three-point function in the standard CDM model and its variants with extra large-scale power 

(e.g., Qh = 0.2 CDM), as well as in a generalized version of the non-local. scale-dependent bias scheme 

embodied in the cooperative galaxy formation (hereafter CGF) model of Bower et al. . Using the results 

of second-order perturbation theory (Fry 1984), they compared the predictions of these models for the 

three-point function (3 with data from the Center for Astrophysics (Huchra, et al. 1983), Southern Sky 

t 
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(Da Costa,et al. 1991), and Perseus-Pisces (Haynes and Giovanelli 1988) redshift surveys in the mildly 

non-linear regime (<2 < 1). 

In this Letter, we compare these model predictions to the higher order galaxy correlations recently 

estimated for the APM survey by Gaztariaga (1994). The values for the SJ moments in the APM survey 

are statistically more reliable than those inferred from the redshift surveys above, because the APM 

catalog covers over 200 times more volume and contains 300 times more galaxies than the combined 

CfA/SSRS. The skewness S3 found in the APM survey is typically larger than in the optical redshift 

surveys (Gaztaiiaga 1992). However, the disagreement is only significant on small scales: at the largest 

scales probed by the redshift surveys, R N 2Oh-’ Mpc, the value of S3 N 2 found in the CfA/SSRS 

catalogs is in good agreement with the APM results. Furthermore, comparison of the CfA and SSRS 

catalogs with comparable sub-samples of the APM indicates that the difference in skewness on small 

scales is attributable to the fact that the local galaxy distribution traced by the CfA and SSRS catalogs 

does not correspond to a “fair sample” rather than to uncertainties in the APM selection function 

(Gaztar?aga 1994). 

2 The APM galaxy moments 

In the weakly non-linear regime (t2 < l), non-linear perturbation theory has been shown to hold remark- 

ably well when compared with N-body simulations (Baugh, Gaztariaga, & Efstathiou in preparation, 

Efstathiou et aI. 1988, Bouchet and Hernquist 1992, Weinberg & Cole 1992, Juskiewicz, Bouchet, & 

Colombi 1993, Bernardeau 1994). In perturbation theory (Fry 1984, Goroff, et al. 1986, Bernardeau 

1992, 1994), the matter density field evolved gravitationally from Gaussian initial conditions leads to 

a hierarchical clustering pattern of the form CJ = SJ $-‘. Here cJ is the volume-averaged J-point 

correlation function, 

fJ(V) = $ /. - -/d3rl...d3rJ<J(rl, . . . . rJ)W(rl)...W(rJ) ( 

where W(r) is a window function of characteristic volume V (below, we use a top-hat window of radius 

R). For models without strong features in the linear power spectrum (e.g., CDM and its popular 

variants), the perturbative J-point moments SJ depend only weakly on the window smoothing scale 

(for power law spectra, the SJ(R) are independent of R). Here we focus on the hierarchical amplitudes 

$3 and Sq, the normalized measures of the skewness and kurtosis of the smoothed density probability 

distribution function. 

Figure 1 shows the values of S3( R) and Sd(R) for spherical cells of radius R1 estimated from the 

angular amplitudes s,(e) and ~(8) in the APM galaxy survey (cf. Fig. 4 of Gaztaxiaga 1994). The 

error-bars correspond to the one-sigma dispersion between four disjoint zones of the APM map and 

are therefore an estimate of the ‘cosmic variance’. The bins in the data correspond to the bins in the 

angular data: the original angular cell counts are done in conical volumes. Each angular bin in tke 

SJ(e) data is such that the conical volume in one cell is at least 100% larger than the volume of the 

next smallest bin, so the correlations in each bin are roughly independent from the others. The angular 
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Figure 1: The volume-averaged skewness S3( R) and kurtosis S4( R) for spherical cells of radius R = 82). 
estimated from SJ(6) in the APM survey, where the effective depth ‘L) N 400 IL-’ Mpc. Error-bars 
correspond to one-sigma dispersion of SJ(e) between 4 zones of the APM map. Curves correspond 
to the SJ(R) predictions in perturbation theory for standard CDM (I’ = 0.5, long-dash curves), low- 
density CDM (I’ = 0.2, short-dash curves), the inferred APM spectrum (solid curves) and standard 
CDM modified by the scale-dependent bias (CGF model), with ri 
curve). These models are all shown with br E 

= 2.29, R, = 20h-’ Mpc (dotted 
b = 1, c2 = c3 = 0. Also shown (dot-dash curves) are the 

moments for a biased P = 0.2 model with b = 1.5, c;! = 0.45, c3 
to the unbiased case. 

= 0.2 choosen to give similar predictions 

amplitudes have been corrected by a factor 0.95J-2 to account for residual contamination from merged 

images in the APM survey (Maddox, et al. 1990, Gaztaxiaga 1994); since this factor is approximate. 

the error-bars on SJ(O) were constrained to be at least as large as the correction factor. We have also 

performed N-body simulations to verify that the errors introduced by uncertainties in the APM selection 

function and in the two- to three-dimensional inversion factors are small compared with those above 

(Gaztanaga 1994, and in preparation). Thus, for the purposes of comparison with theoretical models. 

the data points shown in Fig. 1 can be taken to be independent and have been assigned conservative 

errors. (For additional details, see Gaztariaga 1994.) 

t 

For the models, we assume the initial fluctuations are small and Gaussian, and that they evolve under 

the influence of gravity in an expanding universe. We estimate the moments SJ(R) = ~J(R)/~2(R)J-’ 

for the matter distribution using (J - 1)-order perturbation theory (Fry 1984, Bernardeau 1994). The 

results for SJ are completely determined by the linear power spectrum P(k), for which we adopt the 

parametric form 

1 7k 9k3/’ 
I+++-+$ 

-2 

, (3) 

where the wavenumber k is in units of h Mpc-‘, and ai = c2(R = 8 h-’ Mpc) is the variance of the 

linear mass fluctuation within (top-hat) spheres of radius 8 h-’ Mpc. For CDM models, equation @j 

gives an accurate fit to the linear power spectrum with I’ = !2h (Davis, etal. 1985). We consider two 

models: ‘standard CDM’ with I’ = 0.5, and ‘low-density CDM’ with I’ = 0.2. For each model, we use the 

w 
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power spectrum P(k) to calculate the variance c2(R) and its derivatives T,~ = d” log cZ( R)/dlog” R and 

use the results of Bernardeau (1994) to calculate the predicted amplitudes S3( R) and S4 (R). These are 

shown as the long and short-dash curves in Fig. 1 for standard and low-density CDM. For comparison. 

the solid curves in Fig. 1 show the predicted higher moments using the power spectrum inferred directly 

from the APM catalog by Baugh St Efstathiou (1993) as the linear input for higher order perturbation 

theory. This spectrum is reasonably well approximated by the r = 0.2 CDM model. 

To show the effects of scale-dependent bias, we also consider the non-local bias model of Bower. etal. 

(1993). In this model, the linear galaxy power spectrum is just the standard I? = 0.5 CDM spectrum 

multiplied by the ‘cooperative’ bias factor 6*( I;) = (1 + tie- (kR*)‘/2)2. In the parameter range studied 

by Bower, &al., the choice r;. = 2.29, R, = 20 h-’ Llpc for the strength and range of cooperative effects 

gives the best fit to the APM angular correlation function, and for illustration we focus on this case. 

The corresponding skewness and kurtosis are shown as the dotted curves in Fig. 1. As noted by Frieman 

& Gaztafiaga (1994), in this model there is a sharp downturn in the SJ on large scales, R > 10 h-’ Mpc. 

which is at variance with the relative flatness of the observed moments. 

The model curves in Fig. 1 were all plotted assuming the linear bias model of equation (1) with 

b = 1. When considering higher-order perturbations, however, one should self-consistently allow for 

higher-order (non-linear) bias, and replace (1) with an expansion of the form 

6, = f(6) = g % 
k=l k! 

. (4’ 

Fry and Gaztafiaga (1993) have shown that such a local transformation 6 + b9 preserves the hierarchical 

nature of the matter distribution in the limit of small fluctuations, i.e., on large scales, although the 

values of the resulting galaxy hierarchical amplitudes S; will in general differ from those of the density 

field (see also Juszkiewicz, etal. 1993). For J = 3,4, they find 

s; = b-‘[S3+3c*]+u(62) , (5) 

si = b-2[S4 + 12QS3 + 4~3 + 12c;] + 0 (6* ) , (6) 

where S; are the galaxy amplitudes, SJ are the matter density moments, 6 = 61 is the linear bias. 

and c2 = bs/b and c3 = b3/6 are the lowest relative non-linear bias terms in equation (4). Since S3 

and ~2 may generally be of order unity, the contribution of the quadratic bias to Si is comparable to 

that from the linearly biased second-order skewness of the matter. Thus, it is inconsistent to assume 

either a purely linear bias or to ignore the gravitationally induced skewness, even in the limit of very 

small fluctuations. This method has been extended to scale-dependent bias models by Frieman and 

Gaztaiiaga (1994) and we make use of their results below. 

Detailed analysis of N-body results (Baugh, Gaztatiaga & Efstathiou 1994 in preparation) show 

that the perturbation theory predictions for SJ agree remarkably well with the non-linear field for 

scales where cZ 5 1, while on smaller scales, S3 in the simulations rises above the perturbative results. 

Thus, in Fig. 1, the comparison with perturbation theory must be restricted to scales larger than 

R N 7 h-’ Mpc to be in the quasi-linear regime. This restriction also implies that we only need include 
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Table 1: Best fit values of the non-linear bias parameters c2 and c3 for different values of b, fitted using 
the APM S3 and S4 and the predictions of different models. Each entry is a range of allowed values 

iA mor, A,,,inlx2 where x2 is the goodness of the fit at the ends of the range. 

6=1.5 
5,0.02]2..5 [0.42,0.49]2.5 [0.57,0.65]‘~.5 / 

c3 [-0.3,2.0]6 [-0.2,0& - [-o.o,o.i]~ 

r = 0.5 

c2 [O.&l.:ol, 
b = 1.5 b=2 

[0.29,0.38]2.5 [0.47,0.56]2.5 
Q [-0.2, 1.816 [0.5, 1.816 [OX, 1.9ifj 

CGF b = 1.5 b=2 

02 ,.4&:8], 1 [0.65,0.70]4 (0.73,0.78]2.5 

c3 [-0.3,1.0]14 [OA, 1.616 (-0.0,2.1](j 

terms up to order J - 1 for SJ in the local bias expansion (4). Over this range of scales. Fig. 1 shows 

that the APM skewness and kurtosis are reasonably well fit (within the errors) by the low-density CDM 

model with no bias, i.e.. bl = 1, bk>l = 0, whereas the unbiased CGF model does not agree with the 

data. 

We can use the five APM amplitudes S3(R) at R > 7 h-’ Mpc to find the best-fit quadratic bias 

parameter c2 for each model shown in Fig. 1, given a value of the linear bias b. Table 1 shows the range 

of values of c2 which give the best fit for each model. The goodness of the fit, parametrized by the 

x2(4) value, is shown as a subscript to the c2 interval, corresponding to 4 = 5 - 1 degrees of freedom. 

We then use a combined x’ test with the S,(R) and S4( R) APM values to constrain c3. given the range 

allowed for c2 in the S3(R) test for each model. In this case we have 9 data points at R > 7 It-’ Mpc 

(5 from S3 and 4 from S4) and 7 = 9 - 2 degrees of freedom (since q is free and c2 is allowed to vary 

within a range). The best-fit ranges for c3 are also shown in Table 1 and correspond to a goodness of 

fit x2(7) 2: 6, except for the CGF model with b = 1 which has x2(7) N 14. 

For no linear bias, b = 1, the I’ = 0.2 model gives a good fit to the higher moments (at the l-sigma 

level) with no non-linear bias, that is, for c2 = 0 and c3 = 0, while the I’ = 0.5 standard CDM model 

requires c2 N 0.15 and c3 zz 1, and even then only fits the data at the 2-sigma level. The CGF model 

does not fit the data with b = 1 for any choice of the ck (x*(4) > 11). For b > 1, on the other hand. 

all three models can fit the data with different combinations of non-linear bias parameters cg and cg 

as shown in Table 1. However, fits to the data with large values of b are in a sense ad hoc, because 

the agreement is obtained by suppressing the gravitational contribution to SJ and then fitting with the 

non-linear bias terms alone. These values do not really reflect agreement between the data and the 

model, but rather the possibility that, in any model, the observed, nearly constant moments can be 

reproduced by the constant non-linear bias terms in (5) and (6). 

In Fig. 2, we show the values of S; obtained directly from the higher order correlations in the ANI 

survey for J = 3 - 6. Again, there is reasonable agreement with the unbiased perturbation theory 

predictions for the I’ = 0.2 model and for the APM input spectrum from Baugh and Efstathiou (1993) 
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Figure 2: Hierarchical amplitudes SJ for J = 3 - G compared with the predictions in non-linear pertur- 
bation theory with no biasing. Curves correspond to the models in Fig. 1. 

on scales R > 7 h-’ Mpc. 

3 Conclusion 

The simplest interpretation of the higher order clustering data, in particular the agreement between the 

matter amplitudes SJ predicted in non-linear perturbation theory and the observed galaxy amplitudes 

S: in the APM Survey (Figs. 1 and 2), is that there is no bias on scales R > 7 h-’ Mpc: the parameters 

in expansion (4) of a, = f(s) are just b = bl 21 1 and bk,l ‘v 0. Otherwise, one either has to invoke a 

delicate, model-dependent balancing of terms in Eqs. (5) and (6) (as in the b = 1.5 models) or completely 

suppress the contribution of the matter amplitudes SJ via a large linear bias term b and generate the 

observed galaxy signal S$! with non-linear bias alone (e.g., for b = 2, the matter contribution to S;l” is 

suppressed by a factor 4). As one goes to higher orders, this procedure must be done at each order. 

The predictions for the matter amplitudes SJ depend slightly on the shape of the matter power 

spectrum P(k). In Figs. 1 and 2 (solid curves) we have assumed that the galaxy spectrum measured in 

the APM survey is proportional to the matter spectrum. At large scales this spectral shape is similar to 

that of the I’ = 0.2 CDM model. For this case, Table 1 shows that b = 1 is compatible with no biasing. 

i.e. cp = 0 and c3 = 0, while b > 1 constrains the set of possible local non-linear bias parameters. 

One can also assume a different model for the matter spectrum P(k), such as the standard l? = 0.5 

CDM model. In this case, it is necessary to introduce a non-local (scale-dependent) bias model, such 
- 

as the cooperative galaxy formation model of Bower, etal., to explain the discrepancy in shape between 

the APM galaxy power spectrum and the matter density spectrum. We have shown here that scale- 
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dependent bias alone, with no change in the overall amplitude (6 = l), is inconsistent with the observed 

higher order moments (Fig. 1 and Table 1). In principle, one could change the overall normalization of 

the spectrum (through a local bias) in this model; in this case, a reasonable agreement with the higher 

moments can be found for 6 2 2 by fitting the values of c2 and c3. However, this choice of 6 disagrees 

with the COBE DMR normalization of the standard CDM model. 

Let us consider three models with initially Gaussian, scale-invariant fluctuations, to illustrate the 

implications of these results: standard CDM (SCDM) with ‘;20 = 1, h = 0.5; low-density CDM (LCDM) 

with 520 = 0.2, h = 1; and cold plus hot dark matter (CPHDM) with Rcold = 0.8, f2hol = 0.2. and 

h = 0.5. The linear matter spectrum P(k) in each model can be normalized using the COBE DMR 

measurements (Wright et al. 1994), which gives ag z 1 (SCDM, LCDM) and u(; ‘v 0.7 (CPHDM). The 

APM normalization of the galaxy spectrum corresponds roughly to a: 2: 1, so the linear bias for each 

model is fixed by COBE to bcoeE z 1 (SCDM, LCDM) and bcosE 2: 1.5 (CPHDM). The shape of 

the CPHDM power spectrum is qualitatively similar to that of LCDM and to that inferred for .\PXI 

galaxies. 

The COBE-normalized CGF model, based on SCDM and therefore with bcoBE N 1, is ruled out 

by the S3 data in the APM survey, which gives x*(4) > 11 (Table 1). As noted above, the LCDM 

model, also with bcoBE = 1, is compatible with no biasing, ck = 0. The COBE-normalized CPHDM 

model, which corresponds approximately to the 6 = 1.5, I’ = 0.2 entry in Table 1, requires a particular 

combination of non-linear bias parameters to fit the S3 and S4 data, i.e.? c2 N 0.45, cg N 0.2. This 

judicious choice of non-linear bias parameters would need to be extended to c4 and ~5, using the values 

of s5 and S6 in Figure 2. 

In the future, we expect that more accurate determinations of the large-scale higher order moments 

SJ and of the multi-point functions <~(rl , . . . . r~) (Fry 1994) will yield even tighter constraints on the 

nature of bias. 
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